Both in utero tobacco exposure and serum lead levels appear to be associated with ADHD.

Data from the National Health and Nutrition Examination Survey (NHANES) cohort was used to examine associations between prenatal tobacco exposure, current lead exposure, and ADHD in a nationally representative group of children. Between 2001 and 2004, nearly 4000 children aged 8–15 years participated in the NHANES study, including 222 (9%) who met DSM-IV criteria for ADHD or reported using ADHD medications. Maternal smoking during pregnancy was self- or caregiver-reported and serum lead levels, divided into tertiles, were used to determine current lead exposure. Odds ratios* (ORs) for ADHD were 2.4 for children whose mothers smoked during pregnancy, compared with those who did not, and 2.3 for the highest vs lowest lead levels. The combination of prenatal tobacco exposure and current high lead level was associated with an 8-fold increase in ADHD diagnosis. Children with both risk factors comprised <8% of the population, but accounted for nearly 25% of ADHD cases.

Froehlich T, Lanphear B, Auinger P, Hornung R, et al: Association of tobacco and lead exposures with attention-deficit/hyperactivity disorder. Pediatrics 2009;124:e1054–e1063. From the University of Cincinnati College of Medicine, Ohio; and other institutions. Funded by an Academic Pediatrics Association Young Investigator Grant; and other sources. The authors disclosed they have no commercial relationships that might pose conflicts of interest.

*Reference Guide Item.

Aripiprazole Improved Mania

Current guidelines for pediatric bipolar mania recommend either a mood stabilizer or atypical antipsychotic as first-line treatment. The study presented below is one upon which the 2008 approval of aripiprazole (Abilify) for bipolar disorder in patients aged 10–17 years was based.

Methods: Participants in the manufacturer-sponsored multicenter controlled trial were 296 patients aged 10–17 years (mean, 13 years; 78% were aged >11 years) experiencing a bipolar I manic or mixed episode. All had a Young Mania Rating Scale (YMRS) score of ≥20. After a washout, patients were randomized to 4 weeks of double-blind placebo or aripiprazole at 10 or 30 mg/day.

Continued
Results: Both aripiprazole dosages produced significantly greater declines than placebo in YMRS score (p<0.0001). After 4 weeks of treatment YMRS scores decreased from a baseline mean of 30 to 16 with the lower aripiprazole dose, 13 with the higher dose, and 23 with placebo. Overall severity of bipolar illness also decreased significantly with both aripiprazole doses. Response criteria (≥50% YMRS reduction) were met by 45% of patients treated with 10 mg/day aripiprazole, 64% of those treated with 30 mg/day aripiprazole, and 26% of the placebo group. Remission (YMRS score ≤12 and Clinical Global Impression-Severity* score of 1 or 2) rates were 25%, 48%, and 5%, respectively.

Serious adverse events included seizure, aggression, oppositional defiant symptoms, suicidal ideation, and respiratory arrest; none were judged related to medication. One patient had an accidental aripiprazole overdose. Reasons for stopping 10 mg aripiprazole included fatigue and sedation in 2 patients each, and akathisia, aggression, and suicidal ideation in 1 patient each. In the 30 mg group, 3 patients withdrew because of extrapyramidal symptoms, 2 for clinical worsening of bipolar disorder, and 1 each for vomiting, dystonia, and somnolence. Heart rate, blood pressure, and ECG parameters were not significantly altered. The most frequently reported adverse effects were extrapyramidal symptoms and somnolence and they appeared to be dose related. No clinically meaningful metabolic effects occurred, but the study duration was short.

Discussion: This study provides additional support for the use of atypical antipsychotics and particularly aripiprazole in pediatric bipolar disorder, but comparative efficacy among the agents will need to be evaluated in head-to-head trials.

Study Rating—17 (100%): This study met all criteria for a randomized controlled trial.

Findling R, Nyilas M, Forbes R, McQuade R, et al: Acute treatment of pediatric bipolar I disorder, manic or mixed episode, with aripiprazole: a randomized, double-blind, placebo-controlled study. *Journal of Clinical Psychiatry* 2009; 70 (October):1441–1451. From Case Western Reserve University, Cleveland, Ohio; and other institutions. **Funded by Otsuka Pharmaceutical Co. Two study authors disclosed commercial relationships that might pose conflicts of interest; all other authors are employed by Otsuka, manufacturer of Abilify.**

*Reference Guide Item.

Can Repeat Sexual Offenses be Predicted?

According to a review in *Behavioral Sciences and the Law,* "measures that have demonstrated some use in predicting general violence among adolescents do not appear profitable for predicting sexual recidivism, even in adolescents with a history of sex offenses."

Risk assessment in young patients is complicated by developmental changes and maturation occurring during adolescence. Several risk assessment measures specific to sexual recidivism such as the Juvenile Sex Offender Assessment Protocol–II and the Estimate of Risk of Adolescent Sex Offender Recidivism have been developed, but none have been validated and the predictive value is limited. Peer associations, family dynamics, and community involvement should be factored into the assessment as these can have protective or aggravating effects. In addition, the patient’s attitude about the offense and the presence of substance use and other mental health and developmental issues must also be considered. As these factors can change, risk prediction can only be valid for only a short period of time (about 6 months).

Although predicting which adolescents are likely to repeat sexual offenses is problematic, a recent as yet unpublished study (in press) concluded that recidivism rates in juvenile sex offenders appear to be low. Other studies have shown treatment can reduce the risks.

PANDAS: New Information

The evidence to support pediatric autoimmune neuropsychiatric disorders associated with streptococcal infections (PANDAS) comprises a case series and a case-control study.1 The results of a new case-control study reported in Neurology do not support the association.2

Methods: Records were retrieved from a computerized U.K. medical database for patients aged 2–25 years between 1995 and 2007 who were treated at 1 of 330 medical practices. Case patients (n=255) were those who had received a diagnosis of obsessive compulsive disorder (OCD) or Tourette's syndrome (TS)/tics, and each was matched with up to 20 control subjects without a neuropsychiatric disorder. Occurrence of clinically diagnosed streptococcal infection in the 2 years before the neuropsychiatric diagnosis was compared.

Results: Of the 225 case patients, 33 (15%) had a strep infection in the 2 years prior to diagnosis. The infection rate in the control group was also 15%, indicating no association between OCD or TS/tics and infection. The association was confirmed in 1 subgroup analysis. OCD was significantly associated with possible streptococcal infection not treated with antibiotics in the prior 2 years (odds ratio,* 2.59; p=0.02). However, given the number of analyses conducted this may have been due to a type I statistical error.

Discussion: These results contradict those of the previous case-control study conducted in the U.S. The present population was substantially larger, thus increasing the statistical power of the comparison, and the study included a longer "exposure" period for infection. All information, including diagnosis of TS, OCD, and tics, was gathered from general practitioner records, and patients who had been referred for specialist diagnosis would not have been identified. However, the rate of infection in the control group was similar to that of the previous study.

Reference Guide

Clinical Global Impression Severity (CGI-S) Scale: A 7-point rating of the severity of illness. A score of 1 corresponds to a rating of normal; 2=borderline mentally ill; 3=mildly ill; 4=moderately ill; 5=markedly ill; 6=severely ill; 7=extremely ill.

Odds Ratio: A comparison of the probability of an event in two groups. An odds ratio of 1 implies that the event is equally likely in both groups. An odds ratio greater than 1 indicates that the event is more likely to occur in that group than in the comparison group.
Academic Achievement
ADHD, 35

ADHD
Divalproex Plus Stimulants, 62
Dopamine Theory, 44
Fatty Acids, 29
Ginkgo Biloba, 64
Guanfacine, 15, 17, 60
Long-Acting Methylphenidate in Preschoolers, 32
Long-Term Outcome, 25
Medication Abuse, 49
Medications Reviewed, 15
Methylphenidate Cardiac Arrest, 3
Pediatrician-Treated, 53
Pharmacotherapy and Academic Achievement, 35
Placebo Effects, 25
Predicting Atomoxetine Response, 34
Sleep Duration and Behavior, 29
Stimulants and Brain Growth, 7
Stimulants and Cytogenetic Changes, 1
Stimulants and Sudden Death, 39
Tobacco and Lead Exposure, 67
Treatment and Mania/Psychosis, 14
Zolpidem for Insomnia, 26

Adverse Effects
Anesthesia and Learning Disability, 46
Isotretinoin Psychiatric Effects, 63
Mania and Psychosis with ADHD Drugs, 14
Methylphenidate Cardiac Arrest, 3
Montelukast Psychiatric Effects, 41
QT Prolongation with Anorexia Treatments, 20
Stimulants and Sudden Death, 39
Venlafaxine Hallucinations, 28

Aggression
Aripiprazole in Autism, 61
Aripiprazole in Conduct Disorder, 56
Divalproex in ADHD, 62
Fear of Harm in Bipolar Disorder, 45
Lithium, 5

Alpha-linolenic Acid
ADHD, 29

Alpha-tocopherol
ADHD, 29
depression
CBT for Suicide Prevention, 50
Isotretinoin Adverse Effects, 63
Paroxetine, Divalproex, and Bipolar Risk, 11
Persistent Improvement, 51
Placebo and Long-Term Outcome, 10
Placebo Response, 1
Predicting Remission, 4
Predicting Self-Harm, 13
Preventing Suicide, 49
Substance Abuse and HPA Activity, 19
Sustained Remission, 9
Treating Preschoolers, 63

depression, resistant
Treatment: Expert Opinion, 65
dexmethylphenidate
Mania and Psychosis, 14
dextroamphetamine
Abuse in ADHD, 49
diagnostic delay
Bipolar Disorder, 28
diphenhydramine
Pediatric Insomnia, 7
disruptive behavior disorders
Pediatric Rage, 37
divalproex
Aggression in ADHD, 62
Bipolar Disorder, 14, 27
Depression with Bipolar Risk, 11
docosahexaenoic acid
Autism, 55
dopamine theory
ADHD, 44
dosing patterns
Stimulants, 10
doxepin
Pediatric Insomnia, 7
doxylamine
Pediatric Insomnia, 7
drug approvals
Guanfacine for ADHD, 60
de
Eicosapentaenoic acid
Autism, 55
eszopiclone
Pediatric Insomnia, 7
fatty acids
ADHD, 29
Autism, 55
fear of harm
Bipolar Phenotype, 45
fetal exposure
Anesthesia and Learning Disability, 46
Antiepileptics and Autism, 2
fluvoxamine
Pediatric Insomnia, 7
G–K
genetics
Autism, 47
CYP Genotype and Psychotropic Efficacy, 52
ginkgo biloba
ADHD, 64
guanfacine
ADHD, 15, 17, 60
hallucinations
Venlafaxine, 28
hops
Pediatric Insomnia, 7
hyperprolactinemia
Antipsychotics, 59
imipramine
Panic Disorder, 19
insomnia
Reviewed, 7
Zolpidem in ADHD, 26
Integrative Therapy for Attachment and Behavior
Efficacy, 57
irritability
Aripiprazole in Autism, 61
Aripiprazole in PDD, 41
isotretinoin
Psychiatric Effects, 63
kava
Pediatric Insomnia, 7
L–O
lead exposure
ADHD, 67
learning disability
Anesthesia, 46
lemon balm
Pediatric Insomnia, 7
linoleic acid
ADHD, 29
lisdexamfetamine
ADHD, 29
lithium
Aggression in Conduct Disorder, 5
Bipolar Affective Disorder, 23
Severe Mood Dysregulation, 22
mania
ADHD Drugs, 14
Aripiprazole, 67
Divalproex Safety and Efficacy, 14
Risperidone, 65
medication abuse
ADHD, 49
medication nonadherence
Injectable Risperidone, 33
melatonin
Pediatric Insomnia, 7
memantine
Augmentation in OCD, 17
metformin
Antipsychotic Weight Gain, 38
methylphenidate
Abuse, 49
ADHD, 15
Cardiac Arrest, 3
Cytogenetic Changes, 1
Dosing Patterns, 10
Long-Acting in Preschoolers, 32
Mania and Psychosis, 14
migraine
Topiramate Prophylaxis, 21
mirtazapine
Pediatric Insomnia, 7
mixed amphetamine salts
Abuse in ADHD, 49
ADHD, 15
Cytogenetic Changes, 1
Dosing Patterns, 10
Mania and Psychosis, 14
modafinil
ADHD, 15
Mania and Psychosis, 14
montelukast
Psychiatric Effects, 41
mood alterations
Montelukast, 41
mood dysregulation
Pediatric Rage, 37
mood stabilizers. See also specific drugs
Pediatric Insomnia, 7
obsessive-compulsive disorder
Memantine Augmentation, 17
obstructive sleep apnea
Insomnia Reviewed, 7
olanzapine
Hyperprolactinemia, 59
QT Prolongation, 20
P–Q
PANDAS
Update, 69
Parent–Child Interaction Therapy–Emotion Development
Preschool Depression, 63
paroxetine
Depression and Bipolar Risk, 11
Panic Disorder, 19
Pediatric Insomnia, 7
passionflower
Pediatric Insomnia, 7
pervasive developmental disorders
Aripiprazole for Irritability, 41
Zinc and Copper, 23
placebo response
ADHD, 25
Depression, 1
play therapy
PTSD, 21
posttraumatic stress disorder
Treatments Reviewed, 21

practice guidelines
Panic Disorder, 19
Parameters for Psychotropic Use, 53

predicting outcomes
Atomoxetine in ADHD, 34
CBCL Profile Predicts Bipolar Disorder, 34
Conduct Disorder, 47
Depression Remission, 4
Long-Term in ADHD, 25
Self-Harm, 13
Sexual Offense Recidivism, 68
Suicide, 49

pregnancy
Anesthesia and Learning Disability, 46
Antiepileptics and Autism, 2

preschool children
Depression, 63
Long-Acting Methylphenidate, 32

prescribing patterns
Atypical Antipsychotics, 58

psychological debriefing
PTSD, 21

psychosis
ADHD Drugs, 14
Bullying, 38
Isotretinoin Adverse Effects, 63
Prodromal, 45

psychotherapy
PTSD, 21

quetiapine
Hyperprolactinemia, 59

R–S
rage
Diagnosis and Illness Variables, 37
ramelteon
Pediatric Insomnia, 7
relapse
Bipolar Disorder, 43
remission
Placebo in Depression, 10
Predicting in Depression, 4
QT Prolongation, 20
Sustained in Depression, 9

restless leg syndrome
Insomnia Reviewed, 7
risperidone
Bipolar Mania, 65
Hyperprolactinemia, 59
Injectable in Bipolar Disorder, 33
Saint John’s Wort
Pediatric Insomnia, 7
schizophrenia
Aripiprazole, 55
selective serotonin reuptake inhibitors (SSRI). See also specific drugs
Panic Disorder, 19
self-harm
Predicting, 13
self-injurious behavior
Aripiprazole in Autism, 61
severe mood dysregulation
Lithium, 22
sexual offenses
Predicting Recidivism, 68
sleep deprivation
Behavior in ADHD, 29
stimulants. See also specific drugs
Brain Growth, 7
Cardiac Arrest, 3
Cytogenetic Changes, 1
Dosing Patterns, 10
Sudden Death, 39
substance abuse
Depression and HP A Activity, 19
sudden death
Stimulants, 39
suicide, suicidal ideation
CBT for Prevention, 50
Clinical Correlates, 40
Isotretinoin Adverse Effects, 63
Montelukast, 41
Predicting, 13
Prevention in Depression, 49

T–V
TAD Study
Persistent Improvement in Depression, 51
Placebo and Depression Remission, 10
Suicidal Events, 40

Sustained Depression Remission, 9
tantrums
Aripiprazole in Autism, 61
TASA study
CBT for Suicide Prevention, 50
Suicide Prevention in Depression, 49
tics
PANDAS, 69
Topiramate, 58
Ziprasidone, 2
topiramate
Migraine Prophylaxis, 21
Tourette’s Syndrome, 58
TORDIA study
Predicting Self-Harm, 13
Tourette’s Syndrome
PANDAS, 69
Topiramate, 58
Ziprasidone, 2
trazodone
Pediatric Insomnia, 7
tryptophan
Pediatric Insomnia, 7
valerian
Pediatric Insomnia, 7
valproic acid
In Utero Exposure and Autism, 2
venlafaxine
Complex Hallucinations, 28

W–Z
weight change
Metformin and Antipsychotics, 38
zaleplon
Pediatric Insomnia, 7
ziprasidone
Hyperprolactinemia, 59
Review, 2
zolpidem
ADHD-Related Insomnia, 26
Pediatric Insomnia, 7